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Computations of overturning waves 
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The numerical method of Longuet-Higgins & Cokelet (1976), for waves on deep water, 
is extended to account for a horizontal bottom contour, and used to investigate 
breaking waves in water of finite depth. It is demonstrated that a variety of 
overturning motions may be generated, ranging from the projection of a small-scale 
jet a t  the wave crest (of the type that might initiate a spilling breaker) to large-scale 
plunging breakers involving a significant portion of the wave. Although there seems 
to be a continuous transition between these wave types, a remarkable similarity is 
noticed in the overturning regions of many of the waves. 

Three high-resolution computations are also discussed. The results are presented 
in the form of interrelated space-, velocity- and acceleration-plane plots which enable 
the time evolution of individual fluid particles to be followed. These computations 
should be found useful for the testing of analytical theories, and may also be applied, 
for example, to studies of slamming forces on shipping and coastal structures. 

1. Introduction 
Breaking waves have been classified into four main types by Galvin (1968). Two 

of his categories clearly fall under the heading of ‘overturning’ waves. These are the 
plunging breaker, in which a symmetric wave steepens until a large-scale jet is thrown 
forward from the crest region, and the collapsing breaker, an abbreviated form of 
the plunger, which overturns some way down the forward face. A third type, the 
spilling breaker, is a near-symmetric wave distinguished by a turbulent layer of 
foaming water on its forward face. Although this cannot be described solely in terms 
of irrotational flow, observations suggest that the initial stages of spilling may involve 
a very localized jet at the wave crest. These three breaker types seem to form a single 
family in which there is a continuous variation in the extent and nature of the 
overturning region. (The fourth type described by Galvin, the surging breaker, occurs 
only on steep beaches and is beyond the scope of the present work.) A modification 
to finite depth of the deep-water method of Longuet-Higgins & Cokelet (1976) is used 
to investigate this range of breaking waves, and, although the calculations are for flow 
over a horizontal bottom, a beach-slope parameter is derived and discussed. 

The fluid mechanics of the early stages of the overturning process, before the 
development of a prominent jet, is investigated by Peregrine, Cokelet & McIver 
(1980). These authors classify three regions of particular interest : high particle 
velocities near the wave crest, high accelerations on the forward face, and low 
accelerations on the rear face. (This latter region is interpreted as providing support 
for the high pressure gradients that are required to accelerate fluid particles into the 
jet.) 
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However, in order to follow the motion into the more advanced stages of breaking, 
it is necessary to  increase the number of surface particles used in the calculations. 
An important aspect of the present paper is the discussion of three such high-resolution 
examples, two of which can be followed until immediately before the ‘touchdown’ 
of the jet on the forward face. Computations such as these should be found useful 
for the testing of analytical theories (for instance, Longuet-Higgins (1980) suggests 
that the motion near the jet tip may be described by a rotating form of the Dirichlet 
hyperbola), and, although the knowledge that large accelerations may occur in 
breaking waves is not new, we know of no other calculations of the late stages of the 
overturning motion which are given in similar detail. The examples in the present 
paper enable particle trajectories t o  be simultaneously followed in the space, velocity 
and acceleration planes, and such a detailed knowledge of the wave kinematics may 
be of use to those interested in the design of shipping or coastal structures. 

Section 2 of the present paper describes the numerical methods which were used, 
and in particular shows how the deep-water method of Longuet-Higgins & Cokelet 
(1976) may be simply extended to account for a horizontal bottom at finite depth. 
The accuracy of the computations (an important consideration) is then investigated 
in $3. I n  $4 we present a set of eight waves in shallow water, which are forced to 
break by perturbing the position of the bed, and a beach-slope parameter is derived. 
Section 5 then describes the high-resolution computations, one of which is in deep 
water, and indicates that  accelerations as high as five or six times that due to 
gravity may occur beneath the overturning wave crest. Finally, in $6 a remarkable 
similarity between the overturning regions of many of the waves is noted. 

2. Numerical technique 
This section presents details of the methods used for the calculation of waves in 

water of both infinite and finite uniform depth. 
For the deep-water case, the computations use the boundary-integral technique 

of Longuet-Higgins & Cokelet (1976). The two-dimensional motion is assumed to 
be spatially periodic and such that a harmonic velocity potential exists, and units 
of time and length are chosen so that the wavelength and the acceleration due to 
gravity are h = 1 and g = 1 respectively. The physical z-plane is mapped to  a 
computational [-domain using the transformation 

5 = e-iznr? (2.1) 

under which one wavelength of the free surface is mapped to  a closed contour (C, 
in figure 1). A finite number N of computational particles are then placed on C,, and 
we suppose that their positions and #-values are known a t  some time to.  If, as in 
figure 1, (n ,  s) represents a coordinate system which is locally normal and tangential to 
the free surface (s being the arclength along C, from some arbitrary origin), then the 
tangential particle velocities a#/as are simply evaluated by considering adjacent 
particles and differentiating along the surface. By applying Green’s third identity to 
the fluid volume, a Fredholm integral equation of the first kind for the unknown 
normal velocity a#/& is derived in which the Green’s function is a simple logarith- 
mic singularity. This integral equation is approximated by a matrix system, which is 
numerically inverted to find a#/& at the nodal points. The positions of, and #-values 
at ,  these computational particles are then integrated to the next time level to + 6t using 
the kinematic and dynamic free-surface boundary conditions in conjunction with a 
fourth-order Adams-Bashforth-Moulton technique (with starting values given by a 
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FIGURE 1. The transformed (computational) plane, showing the construction of the Green’s 
function. C, represents one wavelength of the free surface, and C,  is the bed. 

RungeKutta procedure). Thus the fluid flow, starting from given initial conditions, 
can be followed forward through time. 

The calculations for the finite-depth case use a simple extension of this procedure 
to model a horizontal bottom, taken as y = -d, and full details are as given in New 
(1983~) .  Under the transformation (2.1), the bottom becomes a circle of radius 
ro = e-zrd (see C, in figure l),  and the problem reduces to the derivation and solution 
of an integral equation for a$/&, as for the deep-water method. 

Suppose x is fixed at  some point in the fluid domain, while < is allowed to vary. 
We seek a Green’s function G(x;<) and its ‘complement’ a(x;<) satisfying 

VaG= 0, V2a = O  (2 .2a,  b )  

for all points in the fluid domain, except < = x, with the boundary conditions 

aG aa aG -(x;<) = 0, < on C,;  - (x ;<)  = 2n:-(x;<), c o n  C,. (2.2c, d) 
an as an 

In the deep-water case, the bottom contour vanishes and the Green’s function is 
given by a simple logarithmic singularity at <. For the finite-depth case, however, it 
is found necessary to place an image singularity at 

(2.3) 

which is the geometrical reflection of < in C,. The Green’s function is thus given by 

<* = 4 </I < I,, 

1 
G(x;<) = -lnR(x;<),  

2R 
( 2 . 4 ~ )  

where W;<) = I T - X l  I<*-xl, (2.4b) 

and a(x ; 6) = arg (c - x) - arg (<* - x), ( 2 . 4 ~ )  

and its construction is as indicated in figure 1. The minus sign in ( 2 . 4 ~ )  is due to the 
right-handed system (n, s) at < being ‘mirrored’ by a left-handed set at <*. Further, 
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it is clear that an image singularity, of unit negative strength and placed at the origin, 
may be added to the Green’s function as given above, so that, if we then consider 
the limit of increasing depth, the singularity at  e* will be cancelled and the deep- 
water Green’s function returned. 

is now derived by integrating Green’s third identity 
over the fluid volume, suitably indented to include a semicircular contour, C,, of 
vanishingly small radius at x (i.e. ABCDEFA in figure 1). Remembering that the 
normal derivatives of both G and 4 vanish on C,, we deduce that 

The integral equation for 

where the integral on the right-hand side is principal in the sense that the contribution 
from C, is not included. 

This integral equation involves only the free surface C,, so that computational 
particles do not need to be placed on the bottom contour C,. It is of exactly the same 
form as that derived by Longuet-Higgins & Cokelet (1976) for waves on water of 
infinite depth, and is solved in a similar manner. Thus a simple extension to the case 
of a horizontal bottom is achieved. 

3. Accuracy of the computations 
The computations reported by Longuet-Higgins & Cokelet (1976) exhibited a 

‘ sawtooth ’ instability, which was overcome by using a suitable smoothing technique. 
The same method is applied to suppress similar instabilities in the computations 
described in the present paper, and a number of tests have been made in order to assess 
the accuracy of the resulting technique. 

Methods are available (Cokelet 1977; Rienecker & Fenton 1981) for the accurate 
calculation of steadily progressing waves in water of both infinite and finite uniform 
depth. Following the time evolution of such a wave over one period gives results that 
are visually indistinguishable from the initial wave (displaced horizontally by the 
correct amount) for all of the depths of water used in this paper. (Note that the 
breaking events described in 994 and 5 all occur on a timescale of less than one wave 
period.) 

A more stringent test, however, is provided by a comparison with calculations of 
overturning waves made using the alternative numerical method of Vinje & Brevig 
(1981). Though this is again a boundary-integral technique, i t  is sufficiently different 
from that used for the present work to make a comparison worth while (for example 
the integral equation has a 1/1 x-e I-type singularity rather than the In I x-5 I factor 
described in 92). These authors have kindly supplied numerical results for the motion 
developing from a first-order Stokes wave. Such a wave does not satisfy the surface 
boundary conditions for steady motion and, for a sufficiently large amplitude, the 
free surface overturns. A comparison for a deep-water wave has previously been made 
by McIver & Peregrine (1981). Here, however, a comparison is made for a calculation 
on water of mean depth d = 0.1333. The initial free-surface profile and velocity 
potential are given by 

y,(x) = a, cos2xx (3.1 a )  

and #(x, y,) = aO(2x)-1 sin 2xx,  (3.lb) 

where the amplitude a, = 0.0667. The comparison of the two calculations, both using 
N = 59 free-surface particles, is made in figure 2. The wave profiles, upon which the 
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particle numbers are indicated, are displayed for times t = 1.10 and 1.25 (in the 
present units the wave period is approximately (2x);  x 2.51), and the largest 
discrepancies occur on the underside of the overhanging jet. The particles here have 
just passed through the region of highest (surface) accelerations (near the vertical 
tangent on the forward face, see § 5 ) ,  and so we might expect them to have incurred 
the largest errors. However, the overall agreement is good and the small differences 
in the profiles are an indication of the likely errors in both methods. 

In $4 details are presented of overturning waves calculated with N = 60 free- 
surface particles. Further examples described in $5 were calculated using an effective 
value of N = 180. All of these computations (in deep and finite-depth water) are 
thought to be of a similar accuracy and the following discussion of a single case is 
taken as representative. The example chosen is that labelled ‘wave 1 ’ in $4, and the 
profile at time t = 1.35 is shown in figure 3. Computations with both 60 and 180 points 
are shown, but for the latter only every third particle is plotted : these should coincide 
with the 60-point calculation, to which the particle numbering refers. Although both 
profiles are smooth and exhibit no visual evidence of numerical failure, further 
investigation reveals that the velocities of the particles near the jet tip (i.e. particles 
25-38 in the 60-point calculation, and those equivalent to the range 27-33 for the 
higher-resolution example) are developing some irregularity at  this time. Neverthe- 
less, the differences in the positions of the two sets of particles are significantly 
smaller than those in the above comparison with the method of Vinje & Brevig, and 
indicate the accuracy of the present numerical technique. 

The computation of wave 1 with N = 60 free-surface particles breaks down at about 
time t = 1.40, whereas the higher-resolution example can be followed until the jet 
touches the forward face of the wave, near time t = 1.62. The onset of the eventual 
numerical breakdown is indicated in figure 4, which shows the time variation of two 
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FIQURE 3. Comparison between the 60-point ( + )  and 180-point 
(0) calculations of wave 1 at time t = 1.35. 

integral properties of the wave that are theoretically constant. E(t )  is the total 
(kinetic + potential) energy (per unit span) in one wavelength, which should remain 
equal to its value E, at time t = 0, and i j ( t )  is the mean level of the free surface, which 
is initially chosen to be zero. (Mass conservation is automatically ensured by the use 
of a supplementary condition when solving the integral equation.) The 60-point and 
the 180-point calculations are both shown. (Note that, for the higher-resolution 
example, the flow is followed until shortly before time t = 1.00 using only 90 
free-surface particles, whereupon a further set of 90 particles is interpolated, as 
described in $5. The broken lines in figure 4 represent the continuation of the 90-point 
calculation, and we remark that the full set of 180 particles is implemented before 
the 90-point computation becomes inaccurate.) The errors in the higher-resolution 
example are typically an order of magnitude less than those obtained when using 60 
particles, which is consistent with being able to follow the former calculation further 
in time. Indeed, the final breakdown of these two computations seems to occur when 
the respective errors in E(t )  (and i j ( t ) )  reach approximately the same level, (and 
10-4). 
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FIQURE 4. Time variation of the total wave energy E(t )  and mean level jj(t), for the 60-point (+) 
and 180-point (0) calculations of wave 1. The broken line represents the continuing 90-point 
computation. 

4. Waves in water of finite depth 
Eight examples of overturning waves in water of finite depth are now presented. 

These are labelled waves 1-8 and are shown (near to time t = tH, defined below) in 
figures 5 (a-h) respectively. Each was computed with 60 free-surface particles, the 
crest being initially at x = 0. The overturning motion is initiated by a ‘depth 
perturbation ’, such that a wave of initial height H,, which would progress without 
change of form on fluid of some mean depth do, is instead computed on a depth d 
(where usually d < do).  Physically, the motion may be considered to result from an 
initial impulse a t  the level y = -d, which forces the perturbed bottom to become a 
streamline, and instantaneously changes the complete velocity field. The parameters 
corresponding to these eight waves are presented in table 1. Here tv and t, are 
respectively the times of the first occurrence of a vertical tangent to the wave profile 
and of a horizontal tangent beneath the projected jet. Because of the poor numerical 
resolution of the jet in some of these examples (e.g. see waves 4 and 7 in figure 5 ) ,  
the values oft, given are only approximate. The ‘length’ s of the jet at  time t = tH 

is defined to be the horizontal distance between the jet tip and the vertical tangent 
beneath the overturning crest. A measure of the overturning time of the wave is given 
by T = t,-tv, and the parameter U = S/T is then taken to be representative of the 



240 A .  L. New, P .  McIver and D. H .  Peregrine 
. . . . .  

1 I * 
0 4  0.5 0.6' . 0.7 X 

* . * .  ' .  . . .  
. . .J 

1 1 .I * 
0.5 0.6 0.7 . 0.8 X 

1 I I c 
0.6 0.7 0.8 * . 0.9 X . . . ... ..* 

I I c 
0.7 0.8 0.9 '1.0. X 

c 

0.4 0.5 0.6 * . 0.7 X - . .  
. . * . .  

. 5  

cn 

1 c 
0.5 0.6 0.7 * 0.8 X 

. . -. . - .- 

r L 

0.9 1 .o 1.1 1.2 * . x 

. .... ... 
(h ) 

I * 
0.5 0.6 017 * . . 0.8 . X 

FIGURE 5. A variety of breaking waves in water of finite depth, near time t = t,. Waves 1-8 are 
shown in (a)-@) respectively, and the corresponding parameters are given in table 1. 
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Wave 

1 
2 
3 
4 
5 
6 
7 
8 

Wave 

1 
2 
3 
4 
5 
6 
7 
8 

dl3 
0.200 
0.200 
0.200 
0.200 
0.150 
0.150 
0.150 
0.105 

T 

0.350 
0.262 
0.175 
0.113 
0.225 
0.135 
0.115 
0.125 

d 

0.070 
0.100 
0.132 
0.165 
0.070 
0.100 
0.132 
0.070 

S 

0.0707 
0.0309 
0.0168 
0.0076 
0.0296 
0.0110 
0.0079 
0.0088 

Ho 
0.1 10 
0.110 
0.110 
0.110 
0.085 
0.085 
0.085 
0.060 

U 

0.202 
0.118 
0.096 
0.067 
0.132 
0.081 
0.069 
0.070 

Hb 

0.0881 
0.1104 
0.1125 
0.1132 
0.0808 
0.0928 
0.0952 
0.0706 

xb 

0.460 
0.547 
0.656 
0.796 
0.495 
0.638 
1.005 
0.582 

tV 

1.038 
1.263 
1.538 
1 .goo 
1.225 
1.615 
2.625 
1.675 

m 

0.283 
0.183 
0.104 
0.044 
0.162 
0.078 
0.018 
0.060 

t€ i  

1.388 
1.525 
1.713 
2.013 
1.450 
1.750 
2.740 
1.800 

TABLE 1 .  Parameters for the finite-depth waves of 94 

speed at which the jet is ejected from the forward face of the wave. Finally, Hb and 
xb are the wave height and crest position at ‘breaking’ (taken as t = tv), and m is 
an ‘equivalent ’ beach slope, discussed later. The initial free-surface elevation and 
velocity potential for these waves were calculated using the method of Rienecker & 
Fenton (1981). 

Figure 5 shows a wide variety of breakers, ranging from the strongly plunging 
wave 1 to the much weaker wave 4, in which near-symmetry is retained between the 
forward and rear faces. (In this figure the vertical scale is the same as the horizontal 
(which is measured in units of wavelength), and the x-axis lies in the mean level of 
the free surface.) In  view of the difficulty of choosing appropriate length- and 
timescales for the overturning motion, perhaps the ‘type’ of an overturning wave 
(as described in $1) should depend not so much on the size of the jet region as on 
the overall asymmetry in the wave. On this basis, we classify waves 1, 2 and 5 as 
‘plunging ’, waves 3,6 and 8 as ‘ intermediate ’, and waves 4 and 7 as ‘ spilling ’. These 
examples do not include any ‘collapsing ’ breakers, possibly because the necessary 
situation of a steep beach cannot be well modelled by a depth perturbation, however 
severe. 

For those waves having the same unperturbed depth and initial wave height, we 
see from table 1 and figure 5 that, as the depth perturbation becomes more severe, 
the overturning time, jet size, and asymmetry of the wave all show a regular increase. 
These smooth transitions indicate that ‘spillers ’ and ‘plungers ’ can be considered as 
members of a single family of breaking waves with a continuously varying ‘ breaker 

However, the question now arises as to how realistic the depth perturbation is as 
a mechanism for generating overturning waves. For instance: can the motion be 
related to a wave travelling up a plane beach of some ‘equivalent ’ slope m ? Consider 
the initial depth perturbation to be equivalent to a uniform decrease in water depth 
from do to d between x = 0 and x = xb, with a constant depth thereafter. Then, if 

type ’- 
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FIGURE 0. H test of tne Deacn-slope parameter m :  + , experimental points of Bowen et al. - . (Ivaaj ; 0, points corresponding to the present computations. 

it  is assumed that after time t = tv the wave is committed to breaking in a definite 
way such that the ensuing motion is little affected by any further changes in the depth, 
the flow may be similar to that occurring on a beach of slope 

m = ( d , - d ) / z , ,  (4.1) 

values of which are given in table 1. 
The relevance of this parameter is now tested by comparison with the work of 

Bowen, Inman & Simmons (1968). They use the formula that, for waves incident on 
a plane sloping beach which are 'breaking' (i.e. at or after time t = tv), the 
crest-to-trough wave height may be given approximately by 

= y(h+3),  (4-2) 

where y is a constant, h is the local undisturbed water depth and 7 is the wave-induced 
set-up or set-down. They conducted a number of laboratory experiments in which 
plunger-generated waves were incident upon plane concrete beaches, and plotted 7 
(the average value of y ,  for a particular wave, taken over readings from several 
positions) against (beach slope)/(H,/L,):, where H,/L, is the steepness of the related 
deep-water wave. The results appearing in figure 7 of their paper are reproduced in 
the present figure 6. From (4.2) let us now take 7 for the computational waves as 
the value of y at time t = tv, and write 

r = H, /d ,  (4.3) 
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where Hb and d are as given in table 1.  If we also take the beach slope, as m, and 
the deep-water steepness, as H, (assuming Lo = l ) ,  from this table, the corresponding 
points for the eight numerical waves of this section may also be plotted. It is apparent 
from this figure that the numerical results are in general agreement with the 
experimental values, so that the proposed beach-slope parameter does seem to have 
some relevance. 

The computations described in the present section, using N = 60 free-surface 
particles, generally fail shortly after time t = t,. The investigation of the later stages 
of overturning requires improvement in the accuracy of the solution by increasing 
the value of N, as indicated in $3. The detailed results of such calculations are now 
presented. 

5. High-resolution computations 
In order to discuss the physically important quantities in a breaking wave (such 

as velocity and acceleration) during the advanced stages of jet development, the 
results of three computations are now presented for which there were effectively 180 
computational particles in the free surface. (That is, for example, 90 particles were 
used initially, then, at some time (usually near t = tv) before any significant loss of 
accuracy occurred, a further set of 90 particles was interpolated. The calculation then 
proceeded using all 180 particles.) Two of these computations are recalculations of 
waves 1 and 3 of $4. The third is in deep water and the initial conditions represent 
a sine wave of amplitude a, = 0.0866 (see (3.1)). This computation will be labelled 
wave 9. The purpose of these calculations is primarily to investigate the late stages 
of the overturning process and the following presentation covers only the interesting 
period during which the jet is ejected. The fluid mechanics of the earlier development 
of breaking waves is, as remarked in $ 1 ,  discussed by Peregrine et aE. (1980). 

For each of the computations a number of specific times are selected for the 
presentation of results, as follows: 

wave 1 :  t = 1.150, 1.250, 1.350, 1.452, 1.552; 
wave 3:  t = 1.560, 1.620, 1.680, 1.740, 1.800; 
wave 9: t = 1.191, 1.316, 1.441, 1.567. 

In each example, the wavelength considered lies initially between x = 0 and x = 1, 
with the wave crest at x = 0. The profiles for waves 1,  3 and 9 are shown in figures 
7 (a*) respectively, and are plotted using the complete set of 180 particles, although 
for clarity only every fifth is shown. Some of the particles are numbered near the 
earliest profiles, and the corresponding spatial trajectories are indicated by broken 
lines. In each case the particles in the jet tip remain there and appear, from a 
consideration of the acceleration-plane diagrams, to be almost in free fall, so that 
during the late stages of overturning the jet tip is little influenced by the rest of the 
wave. It is also observed that the particles near the position of maximum elevation 
(e.g. particle 110 in wave 9) remain in that region, and that most of the particles 
entering the jet do so from the forward face of the wave (e.g. follow particles 40-65 
for wave 9). 

Although the computations for waves 1 and 9 can be continued until the 
‘touchdown’ of the jet onto the forward face, that for wave 3 fails at an earlier 
time, shortly after the profile shown last in figure 7 (b). This is presumably because 
of the smaller scale of the overturning region, with the correspondingly high surface 
curvatures resulting in a loss of numerical resolution. 

The time evolution of the velocities of typical computational particles is presented 
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FIGURE 7. Profiles from the high-resolution computations of waves 1 (a), 3 (b) and 
9 (c) (times as given in the text): -, wave profiles; ------ , particle paths. 
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in figures 8 (a-c). The abscissa and ordinate represent respectively the horizontal (u) 
and vertical ( v )  velocities in the free surface, and, for clarity of presentation, the 
individual fluid particle trajectories are now shown as the solid lines. The positions 
at  the chosen times are marked and the particle numbers are placed near the 
beginning of each trajectory. (Broken lines represent the envelopes of the starting 
and finishing positions of all such paths.) The most prominent feature of these 
diagrams is the development of the jet in the bottom right-hand corner. These 
particles are approaching free fall and have an increasingly negative vertical velocity 
and an almost-constant horizontal velocity. Further examination reveals that the 
horizontal velocities in the ejecting jets are between 1.5 and 2 times the phase speed 
of the linear wave of the same mean depth and wavelength. 

The corresponding fluid particle accelerations are plotted in figures 9 (a-c). Here 
the axes represent horizontal (a,) and vertical (a,) accelerations, and, returning to 
the convention of figure 7, each solid line is a ‘profile’ of the accelerations in the free 
surface at some instant in time. These profiles are numbered in the time sequence 
as given above, and a dashed line represents a region of significant numerical error. 
(For wave 3 at time t = 1.800, figure 9(b), the error is such that the whole profile is 
omitted.) The near free-fall motion of the jet tip is indicated by the accumulation 
of particles near the point (a,, ag) = (0, - 1) as they pass up the forward face of the 
wave and into the jet (e.g. follow particles 40-60 for wave 1) .  Also, the growth of 
a region of high accelerations beneath the base of the overturning jet is in evidence, 
for example particles 55-65 in the earliest, and particles 3540 in the latest, profiles 
in wave 1 (see figures 7 (a) and 9 (a)). In particular, we see that accelerations as high 
as five or six times that due to gravity (g = 1)  may occur both horizontally and 
vertically. By way of comparison, we recall that the maximum acceleration in a 
steadily progressing wave is only 0.5g! 

6. Discussion 
The numerical method of Longuet-Higgins & Cokelet (1976), for unsteady waves 

in deep water, has been extended to account for a horizontal bottom a t  finite depth. 
The only essential modification was in the Green’s function which was used in the 
solution of an integral equation for the unknown component of velocity normal to 
the free surface. For deep water, this Green’s function corresponded to a simple 
logarithmic singularity, whereas for the finite-depth case images were taken in the 
bed. The resulting integral equation involved only the free surface so that (unlike 
the method of Vinje & Brevig 1981) computational particles did not need to be placed 
on the bottom. (We note that Isaacson (1982) has used a similar technique in 
calculations of the three-dimensional interactions of non-breaking waves with fixed 
and floating bodies.) 

A variety of overturning motions in shallow water has been investigated. The waves 
were generated by an initial depth perturbation to the horizontal bed, but were 
related to motions ensuing on a sloping beach. For waves perturbed from the same 
initial conditions, a regular transition from spilling to plunging waves was achieved 
as the severity of the perturbation increased, indicating that these two wave types 
can be considered as members of a single family with continuously changing 
characteristics. Referring to figure 5 and table 1, it is apparent that a steep beach 
leads to the development of a large-scale jet and a highly asymmetric plunging 
breaker, whereas a gentle slope results in a near-symmetric spilling breaker with only 
a small-scale jet. This agrees with the observed behaviour of natural breaking waves. 



246 

0.1 

u 0- 

A.  L.  New, P. McIver and D .  H .  Peregrine 

- 

U 

-0.1- 

-0.2- 

-0.31 I I I I 

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 
U 

FIGURE 8(a ,  a). For caption see opposite. 

1 0.7 

In spite of a considerable range of global asymmetries in these waves, however, 
we have noticed that there is typically a strong similarity between the overturning 
regions. This is illustrated in figure 10, in which the waves, all shown at  time t = t,, 
have been scaled with respect to the jet length ~5' and suitably overlaid (but with no 
rotation). Wave I ,  by far the most severe of the depth-perturbed waves, does not 
follow the general trend (being too thin), and is excluded; waves 4 and 7 are not shown, 
because the numerical resolution in the jet region is inadequate. However two 
examples in which breaking is initiated by a different technique are included : wave 9 



Computations of overturning waves 247 

FIGURE 8. Velocity-plane portraits for the high-resolution computations of waves 1 (a), 3 ( b )  and 
9 (c) (times as given in the text): -, particle trajectories; ------, envelopes of the starting and 
finishing positions. Particle numbers are indicated at the beginning of each trajectory. 

is the breaking sine wave already described, and wave 10 is a ‘pressure-forced’ wave 
(see Longuet-Higgins & Cokelet 1976) in which the pressure distribution 

(6.1) p, = -pa sin 2xct sin 2x(z-ct), 

with pa = 0.02, is applied at the free surface until time t = 1/2c and is thereafter zero. 
The initial conditions used for this example would represent a steadily progressing 
wave of height Ha = 0.1 1 on mean depth d = 0.2 (with phase speed c = 0.401 74) in 
the absence of the pressure forcing (i.e. if p, = 0). The similarity between the jet 
regions of all the waves shown in figure 10 is remarkable, despite the differences in 
the global asymmetries. 

Why such a similarity should exist is not clear, but this has also been hinted at 
in the computations of both Longuet-Higgins & Cokelet (1978) and Cokelet (1979). 
However, it may be relevant to remark, as in $5,  that it appears as if the jet regions 
of many waves can be considered as being almost in free fall and dissociated from 
the body of the wave, so that the evolution of the jet during overturning will be to 
a large extent independent of the interior dynamics. This striking similarity seems 
to indicate that a local solution may be valid in the jet region (for instance 
Longuet-Higgins (1980) suggests that the motion near the jet tip may be described 
by a rotating form of the Dirichlet hyperbola), and is an incentive for further work 
to be carried out. 

In  addition to the present high-resolution computations, velocity- and acceleration- 
plane plots have also been discussed both by Peregrine et al. (1980) and by Baker, 
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Meiron & Orszag (1982). However, the computations in the former paper did not 
proceed until a late stage in the overturning, and only a single example was discussed 
in the latter. In neither paper could particle trajectories be simultaneously followed 
through the space, velocity and acceleration planes, so that there seems to be a real 
need for detailed quantitative information such as is provided by the present 
computations. 

These computations demonstrate that the numerical methods are capable of 
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FIGURE 9. Acceleration-plane portraits for the high-resolution computations of waves 1 (a), 3 (b) 
and 9 (c): -, envelopes of the free-surface accelerations; ------, regions of unacceptable 
numerical error. The curves are numbered in the time sequence aa given in the text, and the particles 
are marked aa clarity allows (0 identifies every tenth and + every fifth). 
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FIGURE 10. A selection of wave profiles shown at time t = t, and scaled with respect to the jet length 
S (which is denoted by the tick marks on the arbitrary horizontal axis): 0, wave 2; 0,  3; 0, 5 ;  
.,6;0,8; + , 9 ;  x , lO.  
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describing the overturning process from a symmetric wave until the instant when the 
jet is about to ‘touchdown’ on the forward face. The ‘tube’ which forms beneath 
the projecting jet has itself received considerable attention, with analytical models 
being proposed by Longuet-Higgins (1982)’ New (1983b) and Greenhow (1983). 
Although much still remains to be done, high-resolution computations, like those 
presented here, can provide a valuable check on the validity of the various models. 

It is also hoped that the detailed information given (to the authors’ knowledge for 
the first time) in the present paper will be of interest to those concerned with the 
design of shipping and coastal structures. The growth of a region of high accelerations, 
for example, is in evidence beneath the base of the overturning region. The pressure 
gradient in this region of the free surface (and elsewhere) can be easily evaluated from 
the Euler equation, which, with the present scaling and notation, gives 

-vp = (a,,a,+ 1) .  (6.2) 

Thus we can verify (from figures 7 and 9) that - V p  is always normal to the free 
surface (upon which p is constant) and that p increases rapidly into the fluid volume 
(so that instabilities of the Rayleigh-Taylor type should not be present). The high 
pressure gradients beneath the overturning jet should clearly not be neglected by 
those concerned with forces on fixed or floating structures in such an environment. 
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